
A PI~OCEDURE FOR THE CALCULATION OF BOUNDARY 

LAYERS CONFINED IN DUCTS* 

D. B .  S p a l d i n g  

It is shown that confined boundary layers  can be calculated by a march ing- in tegra t ion  p r o c e -  
dure, if the unknown p r e s s u r e  gradient  is de termined f r o m  a fo rmuta  valid for  one-dimensto:a-  
al flow, and account is taken, in subsequent  s teps ,  of e r r o r s  in the p r e s s u r e  gradients  e m -  
ployed in e a r l i e r  s teps .  The e r r o r s  can be held down to any des i red  magnitude. The method 
is i l lus t ra ted by r e f e r ence  to turbulent pipe flow and to the plane diffuser;  calculat ions a re  
provided of fr ict ion coefficients ,  Stanton numbers ,  and veloci ty  and t e m p e r a t u r e  prof i les .  
Some compar i sons  with exper iment  a r e  provided,  

1. I n t r o d u c t i o n  

1.1 The Prob lem.  Boundary - l aye r  theory is bes t  developed for  flows in which the var ia t ion  of fluid 
p r e s s u r e  with longitudinal dis tanee is p resc r ibed ;  for  example,  Pa tankar  and Spalding [1, 2] have provided 
a genera l  p rocedure  for  solving the parabol ic  different ial  equations of momentum,  enthalpy, and concen t ra -  
tion in these c i r cums tances .  In many prac t ica l  cases ,  however,  the flow is confined in a duct, and the 
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Fig. 1. The d i sc repancy  between the thick- 
ness  of the boundary layer  and the radius of 
the pipe for  a computat io  n of flow in a smooth-  
walled pipe at a Reynolds number  of 104. I) 
change of sca le  of d iagram,  and also change of 
f o rward - s t ep  s ize f r o m  0.05 to 1.0 pipe radii .  

p r e s s u r e  gradient  has to be calculated s imul taneous ly  
with the other  var iab les ;  this necess i ty  leads to dif-  
f iculty in applying the P a t a n k a r - S p a l d i n g  p rocedure  as 
or iginal ly  formulated.  It is the purpose  of the p resen t  
pape r  to show how the difficulty may be removed.  

1.2 The Method. Parabol ic  differentia[  equations 
a r e  mos t  economical ly  solved by a "marching"  in tegra-  
tion: values of velocity,  t empera tu re ,  e t c . ,  at one 
sect ion ac ross  the boundary layer  are  deduced f rom the 
values  of these va r iab les  that p reva i led  at c o r r e s p o n d -  
ing locations a shor t  dis tance ups t ream;  and so, by a 
s t e p - b y - s t e p  movement  in the downs t ream direction,  
the whole field of va r i ab les  is determined.  However,  
the calculat ion of the veloci ty  profi le  at the downs t ream 
end of a step,  f r o m  the veloci ty  prof i le  at the ups t r eam 
end, requ i res  knowledge of the p r e s s u r e  differential;  
and this is not available.  

The procedure  which is now recommended  is: 

(i) Guess the value of the p r e s s u r e  differential ,  
taking into account the en la rgement  in the 
a r e a  of the duct, and the u p s t r e a m  veloci ty  
and densi ty  dis tr ibut ions.  
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Fig. 2. Comparison of present  predic-  
tions (t) with curve represent ing experi-  
mental data for the s h e a r - s t r e s s  coef f i -  
cient versus  the Reynolds number  for 
fully-developed turbulent flow in a round- 
sectioned smooth-walled pipe. 

(ii) Calculate the result ing downstream profiles of velocity, etc. In general,  these will correspond 
to a boundary layer  which does not quite fit the duct; there will be a small  discrepancy between 
the flow area and the duct area. 

([i[) Instead of modifying the p ressu re  difference and repeating the integration for the same step, ad- 
just the p ressure  difference to be applied to the next step so as to take account of the discrepancy 
between the flow area  and the duct area  that has just been observed.  

There are many possible variants of this practice.  One of the simplest  is to calculate the p r e s s u r e  
differential f rom the equations of conservation and momentum for a one-dimensional  flow in a duct having 
the same average velocity and density as the actual flow; then we can deduce: 

/7t/2 u 
Pd - -  Pu = - -  P~ (xa - -  x~) % + _ ~ _  (A a __ An), (1) 

A~ 

where d and u are subscripts  denoting downstream and ups t ream conditions respectively;  p stands for  p r e s -  
sure; P represents  the per iphery of the duct; x is the longitudinal distance; A stands for the c r o s s - s e c t i o n -  
al a rea  of the duct or  flow; 1" is the average shear  s t ress  at the wail of the duct; rh is the rate of mass flow 
along the duct; and u stands for its average velocity. 

The most important part  of the procedure  is the co r r ec t  evaluation of (A d - Au): the duct a rea  must 
be taken for the downstream station, and the flow area for the upst ream station. Sometimes,  in order  to 
avoid instability in the forward-integrat ion process ,  it is helpful to insert  only a fraction (say one half) of 
this discrepancy; but the procedure  is a very  tolerant one, the differences between pract ices  result ing 
mere ly  in different magnitudes for  the average area  d iscrepancy along the length of the duct. 

The workings of the method will now be illustrated by two examples:  fully-developed turbulent pipe 
flow; and the plane diffuser. 

2. T u r b u l e n t  P i p e  F l o w  

2.1. Physical  Inputs to the Calculation. The process  of turbulent flow in a pipe is too well known to 
require  description. The t ranspor t  p rocesses  within it can be presumed to obey the mixing-length hypothe- 
sis of Prandtl  [3], with the mixing-length distribution as specified by Nikuradse [4, 5], with values increased 
by the factor  0.41/0.4; the turbulent Prandtl number will be taken as 0.9. Near the wall, laminar  effects 
become important; these can be accounted for by supposing that, across  a thin region which contains the 
semi - l amina r  layer,  the shear  s t r e ss  coefficient s is related to the Reynolds number 1R of the region by: 

s ~ [K/ln (1 + E R s  I/~ )]9, (2) 

where K = 0.41 and E = 7.35; and the res is tance  to heat and mass t ransfer  is supposed to obey the formula 
recommended by Spalding and Jayatiltaka [6]. 

These specifications suffice to determine the basic t ranspor t  proper t ies  of the turbulent pipe flow; the 
task of the numerical  integration procedure is then to determine the consequent profiles of velocity, t em-  
perature ,  and concentration, and the associated relations between p re s su re -d rop  coefficient, Stanton num- 
ber,  Prandtl  number, and Reynolds number of the pipe. Of course,  at the same time, it is possible (in- 
deed necessary)  to calculate the stages by which the fully-developed profiles are attained with increasing 
distance from the entrance; but these wilt not be reported here because attention will be focussed on the 
flow-development problem in part  3 of this paper. 

2.2. Mathematical Inputs. The Pa tankar -Spatd ing  procedure  is used for solving the part ial  differential 
equations. The grid has 30 intervals in the radial direction, distributed so that the s t ream-funct ion dif- 
ferences  are approximately equal. The forward-s tep  size is equal to one pipe radius, except that the f i rs t  
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Fig. 3. Comparison of predicted values (curves) and 
experimental  values (points) for  the Stanton number in 
fully developed turbulent flow in a smooth-walled pipe 
at var ious laminar  Prandtl  numbers and Reynolds num- 
bers .  The points, taken f rom a survey by Deiss ler  [8], 
are  for  Reynolds numbers of 104 (a) and 5 �9 104 (b). 
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Fig. 4. Profi les  of velocity (a) and of conserved 
proper ty  ~) (b), across  a fully-developed turbulent 
pipe flow at a Reynolds number of 10 4. o -=- lam-  
inar P r and t l - Schmid t  number.  

twenty steps are of one-twentieth this size. The a rea  
difference (A d - Au) was multiplied by 0.5 in o rder  to 
ensure stabili ty under all c i rcumstances .  

2.3. Results.  The Extent to which the Flow Fits 
the Duct. Fig. 1 shows how successful  is the pract ice  
outlined in section 1.2 above; the abscissa  is the longi- 
tudinal distance x/r, where r is the pipe radius; and 
the ordinate is 5r/r,  where 6 r is the excess of the r a -  
dius occupied by the calculated flow over the actual pipe 
radius r. Evidently the d iscrepancy is a very  small 
percentage,  especial ly in the fully-developed condition; 
it can be made still smal le r  whenever desired,  s imply 
by reduction of forward-s tep  size, or by other mea-  
sures .  

Physical  Predict ions for  Fully-Developed Flow. 
Figs.  2 and 3 contain the results  of predictions car r ied  
out at various Reynolds numbers.  In the f i r s t  diagram, 

the predictions are represented by the points; they lie perfect ly  on the curve which represents  the exper i -  
mental data as corre la ted  by Schlichttng [7]. In the second, which has Stanton and P rand t l -Schmid t  num- 
bers  as ordinate and abscissa,  the curves represent  the results  of the computations, while the experimental  
data, extracted f rom a survey  by Deiss le r  [8], are represented by points. 

Figure 4 displays a few of the many profiles of velocity and ~b (the conserved property,  either eathal- 
py or concentration) which were computed during the investigation. 

Discussion. The results  shown in these four figures are  in sa t i s fac tory  agreement  with experimen'tal 
data, where checks have been made. This is not surpris ing,  because the physical inputs (i. e . ,  the Nik- 
uradse mixing-length distribution, the Spald ing-Jayat i l laka  formula,  etc.)  are correla t ions  of data obtained 
in this ve ry  pipe-flow situation. The agreement  must therefore  mere ly  be regarded as a demonstrat ion 
of the fact  that the proposed computation procedure  is capable of application, and introduces no e r r o r  of 
its own. 
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Fig. 5. Variation with longitudinal distance of the discrepancy between 
the duct width and the calculated flow width, for the 4 ~ diffuser. I) Change 
of horizontal scale,  a) 6X/YD, 0 = 0.1; b) 0.05. 

Fig. 6. Variation of drag coefficient s and Stanton number S along the wall 
of the 4 ~ diffuser, compared with experimental data (a for s, b for  S) of 
Hool [9]. 
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Fig. 7. Velocity and temperature  profiles in the 4 ~ dif- 
fuser,  34 initial half-widths f rom the entrance to the duct. 
Full lines represent  the results  of computation; broken 
lines represent  the experimental data of Hool [9]. The 
Reynolds number UG, aYD,0/v equals 105 for. experiment and 
computation alike. 

3.  T h e  P l a n e  D i f f u s e r  

3.1. The Process  Considered. There are surpr is ingly  few full repor ts  in the l i terature of measure -  
ments of friction and heat t ransfer  in confined-flow situations other than ducts of uniform area. One of the 
few is that of Hool [9], who published d a t a  for a plane-walled diffuser, having one s team-heated side, 
and enclosing a steady flow of air; it is with this configuration that the present  section will be concerned. 
Unfortunately, there is no information in the repor t  about the profiles of temperature  and velocity that p re -  
vailed at the entry to the measuring section; these have therefore had to be guessed. Both profiles have 
been presumed to have initially the seventh-power- law form, and to have the same thickness; various 
guesses have been made for  the value of this thickness. 

3.2 Physical  Inputs. The mixing-length hypothesis has been used once again; this time, the mixing 
length has been taken as 0.435 times the distance f rom the wall, up to a maximum of 0.09 times the bound- 
a ry - l aye r  thickness. The region near the wall was handled by means of the "wall functions" described in 
detail by Patankar and SpMding [2]. The laminar  Prandtl  number was taken as 0.7, and the turbulent one 
as 0.9. 

Computations were made for two angles of divergence: 4 ~ and 7% 
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Fig. 8. Variation with longitudinal d is -  
tance of the effieienctes of 4 ~ and 7 ~ 
plane diffusers.  

3.3. Mathematical Inputs. Once again there were 30 
grid intervals in the c r o s s - s t r e a m  direction; but these did not, 
as in the case of pipe flow, s t re tch all the way across  the duct: 
they were confined to the region of significant shear  s t ress ,  
[. e . ,  to the boundary layer  proper,  in the way that is charac-  
ter is t ic  of the Pa taakar -Spa ld ing  method, and which gives it 
its especial economy. The forward-s tep  size was chosen as 
a fixed quantity for the whole of an integration; various values 
were  used, to be mentioned below. 

The p res su re  difference for a forward step was calculated, 
for variety,  in a way that differed slightly f rom that described 

above: the p re s su re  gradient actually used was equal to 0.2 times the value given by Eq. (1) plus 0.8 times 
the value that prevailed at the previous station. This "historical  weighting" is another way of nullifying 
any tendency to instability that should ensue f rom our reluctance to introduce iterative operation. 

3.4. Results .  The Extent to which the Flow Fits the Duct. Figure 5 shows the variat ion with down- 
s t r eam distance x of the d iscrepancy 5Ybetween the area  occupied by the calculated flow, and that p ro-  
vided by the diffuser YD; once again, it is seen that the value is agreeably small; and it is also evident 
that this value diminishes when sma l l e r  values are taken for the forward-s tep  size 6x (YD,0, by which 6x 
is divided, is the value ofY D at the diffuser entrance). There are no significant effects of step size changes 
on such physical ly-meaningful  quantities as Stanton number:  

Stanton Number and Drag Coefficient. Figure 6 shows curves for the predicted values of s h e a r - s t r e s s  
coefficient s and Stanton number S for the 4 ~ diffuser. The initial boundary- layer  thickness was taken as 
one-twentieth OfYD, 0. Experimental  values reported by Hool [9] are represented by c i rc les  and c rosses .  

Evidently the predicted and experimental values are  of the same order .  There  is a tendency for the 
s h e a r - s t r e s s  predictions to lie below the measurements ,  while the Stanton-number predictions show the 
opposite behavior.  While incor rec t  inputs or  presumed s tar t ing profiles may be in part  to blame, it should 
also be mentioned that the reported constancy of s and S in the downstream region is not ve ry  plausible. 
There is need for a more complete investigation, both experimental  and theoretical ,  in o rder  to resolve 
these questions. 

Profi les.  Figure  7 displays some velocity and temperature  profiles for a station near the outlet of 
the 4 ~ diffuser. The full lines represen t  the predictions; the broken ones the reported experimental  find- 
tags. Because the thickness of the boundary layer  at the entrance to Hool 's diffuser is not known, velocity 
profiles are presented which resul t  f rom two distinct integrations: with this thickness equal to 0.05 YD,0 
in one case and 0.20 YD,0 in the second. Inspection of the d iagram shows that the f i rs t  s tar t ing point yields 
a velocity profile which agrees quite well with the experimental one, both in shape and thickness. 

The success  in predicting the velocity profile contras ts  with the failure,  revealed by the top two 
curves of Fig. 7, to compute a real is t ic  tempera ture  profile. This cannot be attributed to an incorrect  
choice of Prandtl number,  for no value in the plausible range (0.5 to 1.0) would significantly improve the 
agreement;  once again, the explanation of the d iscrepancy must be sought f rom a more complete experi-  
mental and theoret ical  study. 

Diffuser Efficiency. Of course,  computations of the kind which yield friction and heat t ransfer  p ro-  
vide very  much additional information. To il lustrate this point, Fig. 8 displays the values of the predicted 
efftciencies of the 4 ~ and 7 ~ diffusers,  defined as actual p re s su re  r ise  divided by the p re s su re  r ise that 
would result  f rom one-dimensional  isentropic flow. No experimental  data for this quantity were  reported 
by Hool; but the predicted values are plausible in magnitude and trend. 

C O N C L U S I O N S  

(a) There  now exists a numerical  procedure which is easi ly capable of solving, exactly and numer ica l -  
ly, the part ial  differential equations of steady boundary- layer  phenomena, even when the flows are confined 
in ducts. 

(b) Knowledge of the basic t ranspor t  p rocesses  in turbulent flows suffices completely for  the accurate 
prediction of heat, mass,  and momentum t ransfer  in turbulent pipe flow and part ial ly for that in a plane 
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diffuser. In the latter ease however, there are some discrepancies between the predictions and the ex- 
perimental data, which only a new investigation can resolve. 
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